
Chapter 21

Introduction to State2

Estimation3

Reading
1. Barfoot, Chapter 2.1-2.2

2. Thrun, Chapter 2

3. Russell Chapter 15.1-15.3

2.1 A review of probability4

Probability is a very useful construct to reason about real systems which we5

cannot model fully at all scales. It is a fundamental part of robotics. No matter6

how sophisticated your camera, it will have noise in how it measures the real7

world around it. No matter how good your model for a motor is, there will be8

modeled effects which make it move a little differently than how you would9

expect. We begin with a quick review of probability, you can read more at10

many sources, e.g., MIT’s OCW.11

An experiment is a procedure which can be repeated infinitely and has a12

well-defined set of possible outcomes, e.g., the toss of a coin or the roll of dice.13

The outcome itself need not always be deterministic, e.g., depending upon14

your experiment, the coin may come up heads or tails. We call the set Ω the15

sample space, it is the set of all possible outcomes of an experiment. For two16

coins, this set would be17

Ω = {HH,HT, TH, TT} .

We want to pick this set to be right granularity to answer relevant questions,18

e.g., it is correct but not useful for Ω to be position of all the molecules in the19

1

https://ocw.mit.edu/resources/res-6-012-introduction-to-probability-spring-2018

2

coin. After every experiment, in this case tossing the two coins once each, we1

obtain an event, it is a subset event A ⊂ Ω from the sample space.2

A = {HH} .

Probability theory is a mathematical framework that allows us to reason3

about phenomena or experiments whose outcome is uncertain. Probability of4

an event5

P(A)

is a function that maps each event A to a number between 0 and 1: closer to 16

this number, stronger our belief that the outcome of the experiment is going to7

be A.8

 What is an Axiom?Axioms Probability is formalized using a set of three basic axioms that are9

intuitive and yet very powerful, they are known a Kolmogorov’s axioms. They10

are11

• Non-negativity: P(A) ≥ 012

• Normalization: P(Ω) = 113

• Additivity: If two events A,B are such that A ∩B = ∅, then14

P(A ∪B) = P(A) + P(B).

You can use these axioms to say things like P(∅) = 0, P(Ac) = 1− P(A), or15

if A ⊆ B then P(A) ≤ P(B).16

Conditioning on events Conditioning helps us answer questions like 17

P(A | B) := probability ofA given that B occurred.

Effectively, the sample space has now shrunk from Ω to the event B. It would18

be silly to have a null sample-space, so let’s say that P(B) ̸= 0. We define19

conditional probability as20

P(A | B) =
P(A ∩B)

P(B)
; (2.1)

the probability is undefined if P(B) = 0. Using this definition, we can21

compute the probability of events like “what is the probability of rolling a 222

on a die given that an even number was rolled”.23

 Partitioning the sample spaceWe can use this trick to get the law of total probability: if a finite number24

of events {Ai} form a partition of Ω, i.e.,25

Ai ∩Aj = ∅ ∀i, j, and
⋃
i

Ai = Ω

26

P(B) =
∑
i

P(B | Ai) P(Ai). (2.2)

3

Bayes’ rule Imagine that instead of someone telling us that the conditioning1

event actually happened, we simply had a belief2

P(Ai)

about the possibility of such events {Ai}. For each of Ai, we can compute the3

conditional probability P(B | Ai) using (2.1). Say we run our experiment and4

observe that B occurred, how would our belief on the events Ai change? In5

other words, we wish to compute6

P(Ai | B).

This is the subject of Bayes’ rule.7

P(Ai | B) =
P(Ai ∩B)

P(B)

=
P(Ai)P(B|Ai)

P(B)

=
P(Ai)P(B|Ai)∑
i P(Aj) P(B | Aj)

.

(2.3)

The Bayes’ rule naturally leads to the concept of independent events. Two8

events A,B ⊂ Ω are independent if observing one does not give us any9

information about the other10

P(A ∩B) = P(A)P(B). (2.4)

This is different from disjoint events. Disjoint events never co-occur, i.e.,11

observing one tells us that the other one did not occur.12

Probability for experiments with real-valued outcomes We need some13

more work in defining probability for events with real-valued outcomes. The14

sample space is easy enough to understand, e.g., Ω = [0, 1] for your score15

at the end of this course. We however run into difficulties if we define the16

probability of general subsets of Ω in terms of the probabilities of elementary17

outcomes (elements of Ω). For instance, if we wish to model all elements18

ω ∈ Ω to be equally likely, we are forced to assign each element ω a probability19

of zero (to be consistent with the second axiom of probability). This is not very20

helpful in determining the probability of the score being 0.9. If you instead21

assigned some small non-zero number to P(ωi), then we have undesirable22

conclusions such as23

P({1, 1/2, 1/3, . . .}) = ∞.

The way to fix this is to avoid defining the probability of a set in terms24

of the probability of elementary outcomes and work with more general sets.25

While we would ideally like to be able to specify the probability of every26

subset of Ω, it turns out that we cannot do so in a mathematically consistent27

way. The trick then is to work with a smaller object known as a σ-algebra, that28

is the set of “nice” subsets of Ω.29

4

Given a sample space Ω, a σ-algebra F (also called a σ-field) is a collection1

of subsets of Ω such that2

• ∅ ∈ F3

• If A ∈ F , then Ac ∈ F .4

• If Ai ∈ F for every i ∈ N, then ∪∞
i=1Ai ∈ F .5

In short, σ-algebra is a collection of subsets of Ω that is closed under comple-6

ment and countable unions. The pair (Ω,F), also called a measurable space,7

is now used to define probability of events. A set A that belongs to F is called8

an event. The probability measure9

P : F → [0, 1].

assigns a probability to events in F . We cannot take F to be too small, e.g.,10

elements of F = {∅,Ω} are easy to construct our P but are not very useful.11

For technical reasons, the σ-algebra cannot be too large; notice that we used12

this concept to avoid considering every subset of the sample space F = 2Ω.13

Modern probability is defined using a Borel σ-algebra. Roughly speaking, this14

is an F that is just large enough to do interesting things but small enough that15

mathematical technicalities do not occur.16

2.1.1 Random variables17

A random variable is an assignment of a value to every possible outcome.18

 Random variables are typically
denoted using capital letters,
X,Y, Z although we will be sloppy
and not always do so in this course
to avoid complicated notation. The
distinction between a random
variable and the value that it takes
will be clear from context.

Mathematically, in our new language of a measurable space, a random variable19

is a function20

X : Ω → R

if the set {ω : X(ω) ≤ c} is F-measurable for every number c ∈ R. This21

is equivalent to saying that every preimage of the Borel σ-algebra on reals22

B(R) is in F . A statement X(ω) = x = 5 means that the outcome of our23

experiment happens to ω ∈ Ω when the realized value of the random variable24

is a particular number x equal to 5 in our case.25

We can now define functions of random variables, e.g., if X is a random26

variable, the function Y = X3(ω) for every ω ∈ Ω, or Y = X3 for short, is a27

new random variable. ? Let us check that Y satisfies our
definition of a random variable. If
{ω : X(ω) ≤ c} lies in F then the
set
{
ω : Y (ω) ≤ c1/3

}
also lies in

F .

An indicator random variable is a special. If A ⊂ Ω,28

let IA : Ω → {0, 1} be the indicator function of this set A, i.e., IA(ω) = 1 if29

ωinA and zero otherwise. If our set A ∈ F , then IA is an indicator random30

variable.

 The function IA is not a random
variable if A /∈ F , but this is, as we
said in the previous section, a
mathematical corner case. Most
subset of Ω belong to F .

31

Probability mass functions The probability law, or a probability distribu-32

tion, of a random variable X is denoted by33

pX(x) := P(X = x) = P ({ω ∈ Ω : X(ω) = x}) .

We denote probability distribution using a lower-case p. It is a function of34

the realized value x in the range of a random variable, and pX(x) ≥ 0 (the35

probability is non-zero) and
∑

x pX(x) = 1 if X takes on a discrete number36

of values. For instance, if X is the number of coin tosses until the first head, if37

5

we assume that our tosses are independent P(H) = p > 0, then we have1

pX(k) = P(X = k) = P(TT · · ·TH) = (1− p)k−1p

for all k = 1, 2, This is what is called a geometric probability mass2

function.3

Cummulative distribution function A cummulative distribution function4

(CDF) is the probability of a random variable X taking a value less than an5

particular x ∈ R, i.e.,6

FX(x) = P(X ≤ x).

 The CDF of a geometric random
variable for different values of p

Note that CDFs need not be
continuous, in the case of a
geometric r.v. since the values that
X takes belong to the set of integers,
the CDF is constant between any
two integers.

The CDF FX(x) is a non-decreasing function of x. It converges to zero as7

x → −∞ and goes to 1 as x → ∞.8

Probability density functions A continuous random variable, i.e., one that9

takes values in R is described by a probability density function.10

11

If FX(x) is the CDF of an r.v. X and X takes values in R, the probability12

density function (PDF) fX(x) (or sometimes also denoted by pX(x)) is defined13

to be14

P(a ≤ X ≤ b) =

∫ b

a

fX(x) dx.

We also have the following relationship between the CDF and the PDF, the15

former is the integral of the latter:16

P(−∞ ≤ X ≤ x) = FX(x) =

∫ x

−∞
fX(x) dx.

This leads to the following interpretation of the probability density function:17

P(x ≤ X ≤ x+ δ) ≈ fX(x) δ.

Expectation and Variance The expected value of a random variable X is18

E[X] =
∑
x

x pX(x)

and denotes the center of gravity of the probability mass function. Roughly19

speaking, it is the average of a large number of repetitions of the same experi-20

ment. Expectation is a linear, i.e.,21

E[aX + b] = aE[X] + b

6

for any constants a, b. For two independent random variables X,Y we have1

E[XY] = E[X]E[Y].

We can also compute the expected value of any function g(X) using the2

same formula3

E[g(X)] =
∑
x

g(x) pX(x).

In particular, if g(x) = x2 we have the second moment E[X2]. The variance4

is defined to be5

var(X) = E
[
(X − E[X])2

]
=
∑
x

(x− E[X])
2
pX(x)

= E[X2]− (E[X])
2
.

The variance is always non-negative var(X) ≥ 0. For an affine function of X ,6

we have7

var(aX + b) = a2 var(X).

For continuous-valued random variables, the expectation is defined as8

E[X] =

∫ ∞

−∞
xpX(x) dx;

the definition of the variance remains the same.9

Joint distributions We often wish to think of the joint probability distribu-10

tion of multiple random variables, say the location of an autonomous car in all11

three dimensions. The cummulative distribution function associated with this12

is therefore13

FX,Y,Z(x, y, z) = P(X ≤ x, Y ≤ y, Z ≤ z).

Just like we have the probability density of a single random variable, we14

can also write the joint probability density of multiple random variables15

fX,Y,Z(x, y, z). In this case we have16

FX,Y,Z(x, y, z) =

∫ x

−∞

∫ y

−∞

∫ z

−∞
fX,Y,Z(x, y, z)dzdydx.

The joint probability density factorizes if two random variables are indepen-17

dent:18

fX,Y (x, y) = fX(x)fY (y) for all x, y.

Two random variables are uncorrelated if and only if19

E[XY] = E[X]E[Y].

Note that independence implies uncorrelatedness, they are not equivalent. The20

covariance is defined as21

cov(X,Y) = E[XY]− E[X]E[Y].

7

Conditioning As we saw before, for a single random variable X we have1

P(x ≤ X ≤ x+ δ) ≈ fX(x) δ.

For two random variables, by analogy we would like2

P(x ≤ X ≤ x+ δ | Y ≈ y) ≈ fX|Y (x | y)δ.

The conditional probability density function of X given Y is defined to be3

fX | Y (x | y) = fX,Y (x, y)

fY (y)
if fY (y) > 0.

For any given y, the conditional PDF is a normalized section of the joint PDF,4

as shown below.5

6

Continuous form of Bayes rule We can show using the definition of condi-7

tional probability that8

fY | X(y | x) =
fX | Y (x | y)fY (y)

fX(x)
. (2.5)

Similarly we also have the law of total probability in the continuous form9

fX(x) =

∫ ∞

−∞
fX | Y (x | y) fY (y) dy.

2.2 Using Bayes rule for combining evidence10

We now study a prototypical state estimation problem. Let us a consider a11

robot that is trying to check whether the door to a room is open or not.12

8

1

We will abstract each observation by the sensors of the robot as a random2

variable Y . This could be the image from its camera after running some3

algorithm to check the state of the door, the reading from a laser sensor (if4

the time-of-flight of the laser is very large then the door is open), or any5

other mechanism. Let us first distinguish between the cause and effect of the6

observation: if the door is open, we get an observation of a certain kind (laser7

sensor says that the time of flight is large), of course the observation is not8

caused by the open door. In other words, we have two kinds of conditional9

probabilities in this problem10

P(open | Y) is a diagnostic quantity, while

P(Y | open) is a causal quantity.

Imagine how you would calibrate the sensor in a lab: for each value of the11

state of the door open, not open you would record all the different observations12

received Y and calculate the conditional probabilities. The causal probability13

is much easier to calculate in this context, one may even use some knowledge14

of elementary physics to model the probability P(Y | open), or one may count15

the number of times the observation is Y = y for a given state of the door.16

The Bayes rule allows us to transform causal knowledge into diagnostic17

knowledge18

P(open | Y) =
P(Y | open)P(open)

P(Y)
.

Remember that the left hand side (diagnostic) is typically something that19

we desire to calculate. Let us put some numbers in this formula. Let20

P(Y | open) = 0.6 and P(Y | not open) = 0.3. We will imagine that the21

door is open or closed with equal probability: P(open) = P(not open) = 0.5.22

We then have23

P(open | Y) =
P(Y | open)P(open)

P(Y)

=
P(Y | open)P(open)

P(Y | open)P(open) + P(Y | not open)P(not open)

=
0.6× 0.5

0.6× 0.5 + 0.3× 0.5
=

2

3
.

Notice something very important, the original (prior) probability of the state24

of the door is was 0.5. If we have a sensor that fires with higher likelihood if25

9

the door is open, i.e., if1

P(Y | open)
P(Y | not open)

> 1

then the probability of the door being open after receiving an observation2

increases. If the likelihood were less than 1, then observing a realization of Y3

would reduce our estimate of the probability of the door being open.4

 The denominator in Bayes rule,
i.e., P(Y) is called the evidence in
statistics.

Combining evidence for Markov observations Say we updated the prior5

probability using our first observation Y1, let us take another observation Y2.6

How can we integrate this new observation? It is again an application of Bayes7

rule using two observations, or in general multiple observations Y1, . . . , Yn.8

Let us imagine this time that X = open.9

P(X | Y1, . . . , Yn) =
P(Yn | X,Y1, . . . , Yn−1)P(X | Y1, . . . , Yn−1)

P(Yn | Y1, . . . , Yn−1)
.

Let us make the very natural assumption that says that our observations from10

the sensor Y1, . . . , Yn are independent given the state of the door X . This is11

known as the Markov assumption.12

We now have13

P(X | Y1, . . . , Yn) =
P(Yn | X)P(X | Y1, . . . , Yn−1)

P(Yn | Y1, . . . , Yn−1)

= η P(Yn | X)P(X | Y1, . . . , Yn−1)

where14

η−1 = P(Yn | Y1, . . . , Yn−1)

is the denominator. We can now expand the diagnostic probability on the15

right-hand side recursively to get16

P(X | Y1, . . . , Yn) =

n∏
i=1

ηi P(Yi | X) P(X). (2.6)

where η−1
i = P(Yi | Y1, . . . , Yi−1).17

The calculation in (2.6) is very neat and you should always remember

10

it. Given multiple observations Y1, . . . , Yn of the same quantity X , we
can compute the conditional probability P(X | Y1, . . . , Yn) if we code up
two functions to compute

• the causal probability (also called the likelihood of an observation)
P(Yi | X), and

• the denominator η−1
i .

Given these two functions, we can use the recursion to update multiple
observations. The same basic idea also holds if you have two quantities
to estimate, e.g., X1 = open door and X2 = color of the door. The
recursive application of Bayes rule lies at the heart of all state estimation
methods.

Let us again put some numbers into these formulae, imagine that the1

observation Y2 was taken using a different sensor which now has2

P(Y2 | open) = 0.5 and P(Y2 | not open) = 0.6.

We have from our previous calculation that P(open | Y1) = 2/3 and3

P(open | Y1, Y2) =
P(Y2 | open)P(open | Y1)

P(Y2 | open)P(open | Y1) + P(Y2 | not open)P(not open | Y1)

=
0.5× 2/3

0.5× 2/3 + 0.6× 1/3
=

5

8
= 0.625.

Notice in this case that the probability that the door is open has reduced from4

P(open | Y1) = 2/3.5

2.2.1 Coherence of Bayes rule6

Would the probability change if we used sensor Y2 before using Y1? In this7

case, the answer to this question is no and you are encouraged to perform this8

computation for yourselves. Bayes rule is coherent, it will give the same result9

regardless of the order of observations. ? Can you think of a situation when
the order of incorporating
observations matters?

10

The order of incorporating observation matters if the state of the world11

changes while we make observations, e.g., if we have a sensor that tracks12

the location of a car, the car presumably moves in between two observations13

and we would get the wrong answer if our question was “is there a car at this14

location”.15

As we motivated in the previous chapter, movement is quite fundamental to16

robotics and we are typically concerned with estimating the state of a dynamic17

world around us using our observations. We will next study the concept of a18

Markov Chain with is a mathematical abstraction for the evolution of the state19

of the world.20

11

2.3 Markov Chains1

Consider the Whack-The-Mole game: a mole has burrowed a network of three2

holes x1, x2, x3 into the ground. It keeps going in and out of the holes and we3

are interested in finding which hole it will show up next so that we can give it4

a nice whack.5

6

This is an example of a Markov chain. There is a transition matrix T which7

determines the probability Tij of the mole resurfacing on a given hole xj given8

that it resurfaced at hole xi the last time. The matrix T k is the k-step transition9

matrix10

T k
ij = P(Xk = xj | X0 = xi).

You can see the animations at https://setosa.io/ev/markov-chains to build more11

intuition.12

The key property of a Markov chain is that the next state Xk+1 is
independent of all the past states X1, . . . , Xk−1 given the current state
Xk.

Xk+1 ⊥⊥ X1, . . . , Xk−1 | Xk

This is known as the Markov property and all systems where we can
define a “state” which governs their evolution have this property. Markov
chains form a very broad class of systems. For example, all of Newtonian
physics fits this assumption.

? Does a deterministic dynamical
system, e.g., a simple pendulum,
also satisfy the Markov assumption?
What is the transition matrix in this
case?What is the state of the following systems?

? Can you think of a system which
does not have the Markov property?

Consider the paramecium above. Its position depends upon a large number13

of factors: its own motion from the previous time-step but also the viscosity14

of the material in which it is floating around. One may model the state of the15

environment around the paramecium as a liquid whose molecules hit thousands16

of times a second, essentially randomly, and cause disturbances in how the17

paramecium moves. Let us call this disturbance “noise in the dynamics”. If the18

https://setosa.io/ev/markov-chains

12

motion of the molecules of the liquid has some correlations (does it, usually?),1

this induces correlations in the position of the paramecium. The position of2

the organism is no longer Markov. This example is important to remember,3

the Markov property defined above also implies that the noise in the state4

transition matrix is independent.5

Evolution of a Markov chain The probability of being in a state xi at time6

k + 1 can be written as7

P(Xk+1 = xi) =

N∑
j=1

P(Xk+1 = xi | Xk = xj) P(Xk = xj).

This equation governs how the probabilities P(Xk = xi) change with time k.8

Let’s do the calculations for the Whack-The-Mole example. Say the mole was9

at hole x1 at the beginning. So the probability distribution of its presence10

π(k) =

P(Xk = x1)

P(Xk = x2)

P(Xk = x3)

is such that11

π(1) = [1, 0, 0]⊤.

We can now write the above formula as12

π(k+1) = T ′π(k) (2.7)

1 and compute the distribution π(t) for all times13

π(2) = T ′π(1) = [0.1, 0.4, 0.5]⊤;

π(3) = T ′π(2) = [0.17, 0.34, 0.49]⊤;

π(4) = T ′π(3) = [0.153, 0.362, 0.485]⊤;

...

π(∞) = lim
k→∞

T ′k π(1)

= [0.158, 0.355, 0.487]⊤.

The numbers P(Xk = xi) stop changing with time k. Under certain technical14

conditions, the distribution π(∞) is unique (single communicating class for a15

Markov chain finite number states). We can compute this invariant distribution16

by writing17

π(∞) = T ′π(∞).

We can also compute the distribution π(∞) directly: the invariant distribution18

is the right-eigenvector of the matrix T ′ corresponding to the eigenvalue 1. ? Do we always know that the
transition matrix has an eigenvalue
that is 1?

19

Example 2.1. Consider a Markov chain on two states where the transition20

1Let us denote the transpose of the matrix T using the Matlab notation T ′ instead of T⊤ for
clarity.

13

matrix is given by1

T =

[
0.5 0.5

0.4 0.6

]
.

The invariant distribution is2

π(1) = 0.5π(1) + 0.4π(2)

π(2) = 0.5π(1) + 0.6π(2).

Note that the constraint for π being a probability distribution, i.e., π(1)+π(2) =3

1 is automatically satisfied by the two equations. We can solve for π(1), π(2)
4

to get5

π(1) = 4/9 π(2) = 5/9.

2.4 Hidden Markov Models (HMMs)6

2
7

Markov chains are a good model for how the state of the world evolves8

with time. We may not always know the exact of these systems and only have9

sensors, e.g., cameras, LiDARs, and radars, to record observations. These10

sensors are typically noisy. So we model the observations as random variables.11

Hidden Markov Models (HMMs) are an abstraction to reason about ob-12

servations of the state of a Markov chain. An HMM is a sequence of random13

variables Y1, Y2, . . . , Yn such that the distribution of Yk only depends upon on14

the hidden state Xk of the associated Markov chain.15

Figure 2.1: A Hidden Markov Model with the underlying Markov chain, the observation
at time k only depends upon the hidden state at that time instant.

Notice that an HMM always has an underlying Markov chain behind it.16

For example, if we model the position of a car Xk as a Markov chain, our17

observation of the position at time k would be Yk. In our example of the18

robot sensing whether the door is open or closed using multiple observations19

across time, the Markov chain is trivial, it is simply the transition matrix20

P(not open | not open) = P(open | open) = 1. Just like Markov chains,21

HMMs are a very general class of mathematical models that allow us to think22

about multiple observations across time of a Markov chain.23

2Parts of this section closely follow Emilio Frazzoli’s course notes at
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-
autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec20.pdf and
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-
decision-making-fall-2010/lecture-notes/MIT16_410F10_lec21.pdf

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec20.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec20.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec21.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec21.pdf

14

Let us imagine that the observations of our HMM are also finite in number,1

e.g., your score in this course ∈ [0, 100] where the associated state of the2

Markov chain is your expertise in the subject matter. We will write a matrix of3

observation probabilities4

Mij = P(Yk = yj | Xk = xi). (2.8)

The matrix M has non-negative entries, after all, each entry is a probability.5

Since each state has to result in some observation, we also have6 ∑
j

Mij = 1.

The state transition probabilities of the associated Markov chain are7

Tij = P(Xk+1 = xj | Xk = xi).

Given the abstraction of an HMM, we may be interested in solving a8

number of problems. We will consider the problem where the state Xk is the9

position of a car (which could be stationary or moving) and observations Yk10

give us some estimate of the this position.11

1. Filtering: Given observations up to time k, compute the distribution of12

the state at time k13

P(Xk | Y1, . . . , Yk).

This is the most natural problem to understand: we want to find the14

probability of the car being at a location at time k given all previous15

observations. This is a temporally causal prediction, i.e., we are not16

using any information from the future to reason about the present.17

2. Smoothing: Given observations up to time k, compute the distribution18

of the state at any time j < k19

P(Xj | Y1, . . . , Yk) for j < k.

The observation at a future time Yk+1 gives us some indication of where20

the car might have been at time k. In this case we are interested in21

using the entire set of observations from the past Y1, . . . , Yj , the future22

Yj+1, . . . , Yk to estimate the position of the car. Of course, this problem23

can only be solved ex post facto, i.e., after the time instant j. An24

important thing to remember is that we are interested in the position of25

the car for all j < k in smoothing.26

3. Prediction: Given observations up to time k, compute the distribution27

of the state at a time j > k28

P(Xj | Y1, . . . , Yk) for j > k.

This is the case when we wish to make predictions about the state of29

the car j > k given only observations until time k. If we knew the30

underlying Markov chain for the HMM and its transition matrix T , this31

would amount to running (2.7) forward using the output of the filtering32

problem as the initial distribution of the state. ? Why is this true?33

15

4. Decoding: Find the most likely state trajectory X1, . . . , Xk that maxi-1

mizes the probability2

P(X1, . . . , Xk | Y1, . . . , Yk)

given observations Y1, . . . , Yk. Observe that the smoothing problem is3

essentially solved independently for all time-steps j < k. It stands to4

reason that if we knew a certain state (say car made a right turn) was5

likely given observations at time k+1 and that the traffic light was green6

at time k (given our observations of the traffic light), then we know that7

the car did not stop at the intersection at time k. The decoding problem8

allows us to reason about the joint probability of the states and outputs9

the most likely trajectory given all observations.10

5. Likelihood of observations: Given the observation trajectory, Y1, . . . , Yk,11

compute the probability12

P(Y1, . . . , Yk).

As you may recall, this is the denominator that we need for the recur-13

sive application of Bayes rule. It is made difficult by the fact that we14

do not know the state trajectory X1, . . . , Xk corresponding to these15

observations.16

These problems are closely related with each other and we will next dig deeper17

into them. We will first discuss two building blocks, called the forward and18

backward algorithm that together help solve all the above problems.19

2.4.1 The forward algorithm20

Consider the problem of computing the likelihood of observations. We can21

certainly write22

P(Y1, . . . , Yk)

=
∑

all (x1,...,xk)

P(Y1, . . . , Yk | X1, . . . , Xk) P(X1, . . . , Xk)

=
∑

all (x1,...,xk)

k∏
i=1

P(Yi = yi | Xi = xi) P(X1 = x1)

k∏
i=2

P(Xk = xk | Xk−1 = xk−1)

=
∑

all (x1,...,xk)

Mx1y1 Mx2y2 . . .Mxkyk
πx1 Tx1x2 . . . Txk−1xk

.

But this is a very large computation, for each possible trajectory (x1, . . . , xk)23

the states could have taken, we need to perform 2k matrix multiplications. ? How many possible state
trajectories are there? What is the
total cost of computing the
likelihood of observations?

24

Forward algorithm We can simplify the above computation using the

16

Markov property of the HMM as follows. We will define a quantity
known as the forward variable

αk(x) = P(Y1, . . . , Yk, Xk = x) (2.9)

where Y1, . . . , Yk is our observation sequence up to time k. Observe now
that

1. We can initialize

α1(x) = πx Mx,y1 for all x.

2. For each time i = 1, . . . , k − 1, for all states x, we can compute

αk+1(x) = Mxyk+1

∑
x′

αk(x
′) Tx′x.

using the law of total probability.
3. Finally, we have

P(Y1, . . . , Yk) =
∑
x

αk(x)

by marginalizing over the state variables Xk.

This recursion in the forward algorithm is a powerful idea and is much1

faster than our naive summation above. ? What is the computational
complexity of the Forward
algorithm?

2

2.4.2 The backward algorithm3

Just like the forward algorithm performs the computation recursively in the4

forward direction, we can also perform a backward recursion to obtain the5

probability of the observations. Let us imagine that we have an observation6

trajectory7

Y1, . . . , Yt

up to some time t. We first define the so-called backward variables which are8

the probability of a future trajectory given the state of the Markov chain at a9

particular time instant10

βk(x) = P(Yk+1, Yk+2, . . . , Yt | Xk = x). (2.10)

Notice that the backward variables βk with the conditioning on Xk = x are11

slightly different than the forward variables αk which are the joint probability12

of the observation trajectory and Xk = x.13

The Backward algorithm We can compute the variables βk(x) recur-

17

sively again as follows.

1. Initialize
βt(x) = 1 for all x.

This simply indicates that since we are the end of the trajectory, the
future trajectory Yt+1, . . . does not exist.

2. For all k = t− 1, t− 2, . . . , 1, for all x, update

βk(x) =
∑
x′

βk+1(x
′) Txx′Mx′yk+1

.

3. We can now compute

P(Y1, . . . , Yt) =
∑
x

β1(x) πx Mxy1
.

? What is the computational
complexity of running the backward
algorithm?Implementing the forward and backward algorithms in practice The1

update equations for both αk and βk can be written using a matrix vector2

multiplication. We maintain the vectors3

αk := [αk(x1), αk(x2), . . . , αk(xN)]

βk := [βk(x1), βk(x2), . . . , βk(xN)]

and can write the updates as4

α⊤
k+1 = M·,yk+1

⊙
(
α⊤
k T

)
where ⊙ denotes the element-wise product and M·,yk+1

is the yth
k+1 column of5

the matrix M . The update equation for the backward variables is6

βk =
(
βk+1 ⊙M·,yk+1

)
T.

You must be careful about directly implement these recursions however, be-7

cause we are iteratively multiplying by matrices T,M whose entries are all8

smaller than 1 (they are all probabilities after all), we can quickly run into dif-9

ficulties where αk, βk become too small for some states and we get numerical10

underflow. You can implement these algorithms in the log-space by writing11

similar update equations for logαk and log βk to avoid such numerical issues.12

2.4.3 Bayes filter13

Let us now use the forward and backward algorithms to solve the filtering14

problem. We want to compute15

P(Xk = x | Y1, . . . , Yk)

18

for all states x in the Markov chain. We have that1

P(Xk = x | Y1, . . . , Yk) =
P(Xk = x, Y1, . . . , Yk)

P(Y1, . . . , Yk)
= η αk(x) (2.11)

where since P(Xk = x | Y1, . . . , Yk) is a legitimate probability distribution on2

x, we have3

η =

(∑
x

αk(x)

)−1

.

As simple as that. In order to estimate the state at time k, we run the forward4

algorithm to update variables αi(x) from i = 1, . . . , k. We can implement5

this using the matrix-vector multiplication in the previous section.6

This is a commonly used algorithm known as the Bayes filter and is our7

first insight into state estimation.8

An important fact Even if the filtering estimate is computed recursively9

using each observation as it arrives, the estimate is actually the probability of10

the current state given all past observations.11

P(Xk = x | Y1, . . . , Yk) ̸= P(Xk = x | Yk)

This is an extremely important concept to remember, in state-estimation we12

are always interested in computing the state given all available observations.13

In the same context, is the following statement true?14

P(Xk = x | Y1, . . . , Yk) = P(Xk = x | Yk, Xk−1)

2.4.4 Smoothing15

For smoothing given observations till time t, we would like to compute16

P(Xk = x | Y1, . . . , Yt)

for all time instants k = 1, . . . , t. Observe the filtering17

P(Xk = x | Y1, . . . , Yt) =
P(Xk = x, Y1, . . . , Yt)

P(Y1, . . . , Yt)

=
P(Xk = x, Y1, . . . , Yk, Yk+1, . . . , Yt)

P(Y1, . . . , Yt)

=
P(Yk+1, . . . , Yt | Xk = x, Y1, . . . , Yk) P(Xk = x, Y1, . . . , Yk)

P(Y1, . . . , Yt)

=
P(Yk+1, . . . , Yt | Xk = x) P(Xk = x, Y1, . . . , Yk)

P(Y1, . . . , Yt)

=
βk(x) αk(x)

P(Y1, . . . , Yt)
(2.12)

Study the first step carefully, the numerator is not equal to αk(x) because18

observations go all the way till time t. The final step uses both the Markov19

and the HMM properties: future observations Yk+1, . . . , Yt depend only upon20

19

future states Xk+1, . . . , Xt (HMM property) which are independent of the1

past observations and states give the current state Xk = x (Markov property).2

Smoothing can therefore be implemented by running the forward algorithm3

to update αk from k = 1, . . . , t and the backward algorithm to update βk from4

time k = t, . . . , 1.

? Both the filtering problem and the
smoothing problem give us the
probability of the state given
observations. Discuss which one
should we should use in practice and
why?

5

To see an example of smoothing in action, see ORB-SLAM 2. What do6

you think is the state of the Markov chain in this video?7

Example for the Whack-the-mole problem Let us assume that we do not8

see which hole the mole surfaces from (say it is dark outside) but we can hear9

it. Our hearing is not very precise so we have an observation probabilities10

M =

0.6 0.2 0.2

0.2 0.6 0.2

0.2 0.2 0.6

 .

Assume that the mole surfaces three times and we make the measurements11

Y1 = 1, Y2 = 3, Y3 = 3.

We want to compute the distribution of the states the mole could be in at each12

time. Assume that the we know the mole was in hole 1 at the first step, i.e.,13

π1 = (1, 0, 0) for the Markov chain, like we had in Section 2.3.14

Run the forward backward algorithm and see that15

α1 = (0.6, 0, 0) , α2 = (0.012, 0.048, 0.18) , α3 = (0.0041, 0.0226, 0.0641) ,

and16

β3 = (1, 1, 1) , β2 = (0.4, 0.44, 0.36) , β1 = (0.1512, 0.1616, 0.1392) .

Using these, we can now compute the filtering and the smoothing state distri-17

butions, let us denote them by πf and πs respectively.18

πf
1 = (1, 0, 0) , πf

2 = (0.05, 0.2, 0.75), πf
3 = (0.045, 0.2487, 0.7063)

and19

πs
1 = (1, 0, 0) , πs

2 = (0.0529, 0.2328, 0.7143), πs
3 = (0.045, 0.2487, 0.7063).

? Do you notice any pattern in the
solution returned by the filtering and
the smoothing problem? Explain
why that is the case.

20

2.4.5 Prediction21

We would like to compute the future probability of the state give observations22

up to some time23

P(Xk = x | Y1, . . . , Yt) for t < k.

Here is a typical scenario when you would need this estimate. Imagine that24

you are tracking the position of a car using images from your camera. You are25

https://www.youtube.com/watch?v=IuBGKxgaxS0

20

using a deep network to detect the car in each image Yk and since the neural1

network is quite slow, the car moves multiple time steps forward before you get2

the next observation. As you can appreciate, it would help us compute a more3

accurate estimate of the conditional probability of Xk = x if we propagated4

the position of the car in between successive observations using our Markov5

chain. This is easy to do.6

1. We compute the filtering estimate πf
t = P(Xt = x | Y1, . . . , Yt), using7

the forward algorithm.8

2. Propagate the Markov chain forward for k − t time-steps using πf
t as9

the initial condition using10

πi+1 = T ′πi.

2.4.6 Decoding: Viterbi’s Algorithm11

Both filtering and smoothing calculate the probability distribution of the state12

at time k. For instance, after recording a few observations, we can compute13

the probability distribution of the position of the car at each time instant. How14

do we get most likely trajectory of the car? One option is to choose15

X̂k = argmax
x

P(Xk = x | Y1, . . . , Yt)

at each instant and output16

(X̂1, . . . , X̂t)

as the answer. This is however only the point-wise best estimate of the17

state. This sequence may not be the most likely trajectory of Markov chain18

underlying our HMM. In the decoding problem, we are interested in computing19

the most likely state trajectory, not the point-wise most likely sequence of20

states. Let us take an example of the Whack-the-mole again. We will use a21

slightly different Markov chain shown below.22

0.9 1

0 0.5 0.5

T� 0 0.9 0.1

0 0 1.0

0.5 0.5

M � 0.9 0.1

0.1 0.9

23

There are three states x1, x2, x3 with known initial distribution π = (1, 0, 0)24

and transition probabilities and observations given by matrices T,M respec-25

tively. Let us say that we only have two observations {y2, y3} this time and26

get the observation sequence27

(2, 3, 3, 2, 2, 2, 3, 2, 3)

from our sensor. The filtering estimates are as follows.28

21

1

The most likely state at each instant is marked in blue. The point-wise most2

likely sequence of states is3

(1, 3, 3, 3, 3, 2, 3, 2, 3).

Observe that this is not even feasible for the Markov chain. The transition4

from x3 → x2 is not even possible so this answer is clearly wrong. Let us5

look at the smoothing estimates.6

7

The point-wise most likely states in this case are feasible8

(1, 2, 2, 2, 2, 2, 3, 3, 3).

Because the smoothing estimate at time k also takes into account the observa-9

tions from the future t > k, it effectively eliminates the impossible transition10

x3 → x2. This is still not however the most likely trajectory.11

We will exploit the Markov property again to calculate the most likely12

state trajectory recursively. Let us define the “decoding variables” as13

δk(x) = max
(x1,...,xk−1)

P(X1 = x1, . . . , Xk−1 = xk−1, Xk = x, Y1, . . . , Yk);

(2.13)
this is the joint probability of the most likely state trajectory that ends at the14

state x at time k while generating observations Y1, . . . , Yk. We can now see15

that16

δk+1(x) = max
x′

δk(x
′) Tx′x Mx,yk+1

; (2.14)

the joint probability that the most likely trajectory ends up at state x at time17

k + 1 is the maximum of among the joint probabilities that end up at any state18

22

x′ at time k multiplied by the one-step state transition Tx′x and observation1

Mxyk+1
probabilities. We would like to iterate upon this identity to find the2

most likely path. The key idea is to maintain a pointer to the parent state3

parentk(x) of the most likely trajectory, i.e., the state from which you could4

have reached Xk = x given observations. Let us see how.5

Viterbi’s algorithm First initialize

δ1(x) = πx Mxy1

parentk(x) = null.

for all states x. For all times k = 1, . . . , t− 1, for all states x, update

δk+1(x) = max
x′

δk(x
′) Tx′x Mx,yk+1

parentk+1(x) = argmax
x′

(δk(x
′) Tx′x) .

The most likely final state is

x̂t = argmax
x′

δt(x
′)

and we can now backtrack using our parent pointers to find the most likely
trajectory that leads to this state

x̂k = parentk+1(x̂k+1).

The most likely trajectory given observations is

x̂1, x̂2, . . . , x̂t

and the joint probability of this trajectory and all observations is

P(X1 = x̂1, . . . , Xt = x̂t, Y1 = y1, . . . , Yt = yt) = δt(x̂t).

This is a very widely used algorithm, both in robotics and in other areas6

such as speech recognition (given audio, find the most likely sentence spoken7

by the person), wireless transmission and reception, DNA analysis (e.g., the8

state of the Markov chain is the sequence ACTG. . . and our observations are9

functions of these states at periodic intervals). Its name comes from Andrew10

Viterbi who developed the algorithm in the late 60s, he is one of the founders11

of Qualcomm Inc.12

Here is how Viterbi’s algorithm would look like for our whack-the-mole13

example.14

δ1 = (0.6, 0, 0), δ2 = (0.012, 0.048, 0.18), δ3 = (0.0038, 0.0216, 0.0432)

parent1 = (null, null, null), parent2 = (1, 1, 1), parent3 = (2, 3, 3).

The most likely path is the one that ends in 3 with joint probability 0.0432.15

23

This path is (1, 3, 3).1

Let us also compute Viterbi’s algorithm for a longer observation sequence.2

3

The most likely trajectory is4

(1, 3, 3, 3, 3, 3, 3, 3, 3).

Notice that if we had only 8 observations, the most likely trajectory would be5

(1, 2, 2, 2, 2, 2, 2, 2, 2).

 Just like the Bayes filter, Viterbi’s
algorithm is typically implemented
using log δk(x) to avoid numerical
underflows. This is particularly
important for Viterbi’s algorithm:
since δk(x) is the probability of an
entire state and observation
trajectory it can get small very
quickly for unlikely states (as seen
in the figure).

6

What is the computational complexity of Viterbi’s algorithm? It is linear7

in the time-horizon t and quadratic in the number of states in the Markov8

chain. We are plucking out the most likely trajectory out of card(X)t possible9

trajectories using the δk variables. Does this remind you of some other problem10

that you may have seen before?11

2.4.7 Shortest path on a Trellis graph12

You may have seen Dijkstra’s algorithm before that computes the shortest path13

to reach a node in the graph given costs of traversing every edge.14

Figure 2.2: A graph with costs assigned to every edge. Dijkstra’s algorithm finds the
shortest path in this graph between nodes A and B using dynamic programming.

In the case of Viterbi’s algorithm, we are also interested in finding the15

24

most likely path. For example we can write our joint probabilities as1

P(X1, X2, X3 | Y1, Y2, Y3) =
P(Y1 | X1) P(Y2 | X2) P(Y3 | X3) P(X1)P(X2 | X1)P(X3 | X2)

P(Y1, Y2, Y3)
.

⇒ log P(X1, X2, X3 | Y1, Y2, Y3) = log P(Y1 | X1) + log P(Y2 | X2) + log P(Y3 | X3)

+ log P(X1) + log P(X2 | X1) + log P(X3 | X2)− log P(Y1, Y2, Y3).

To find the most likely trajectory, we want to minimize − log P(X1, X2, X3 | Y1, Y2, Y3).2

The term log P(Y1, Y2, Y3) does not depend on X1, X2, X3 and is a constant3

as far as the most likely path given observations is concerned. We can now4

write down the “Trellis” graph as shown below.5

Figure 2.3: A Trellis graph for a 3-state HMM for a sequence of three observations.
Disregard the subscript x0.

Each edge is either the log-probability of the transition of the Markov6

chain, or it is the log-probability of the receiving the observation given a7

state. We create a dummy initial node A and a dummy terminal node B. The8

edge-costs of the final three states, in this case sunny/cloudy/rainy, are zero.9

The costs from node A to the respective states are the log-probabilities of the10

initial state distribution. Dijkstra’s algorithm, which we will study in Module 211

in more details, now gives the shortest path on the Trellis graph. This approach12

is the same as that of the Viterbi’s algorithm: our parent pointers parentk(x)13

are the parent nodes in Dijkstra’s algorithm and our delta variables δk(x) is the14

cost of each node in the Trellis graph maintained by the Dijkstra’s algorithm.15

2.5 Learning an HMM from observations16

In the previous sections, given an HMM that had an initial distribution π for the17

Markov chain, a transition matrix T for the Markov chain and an observation18

matrix M19

λ = (π, T,M)

we computed various quantities such as20

P(Y1, . . . , Yt; λ)

25

for an observation sequence Y1, . . . , Yt of the HMM. Given an observation1

sequence, we can also go back and update our HMM to make this observation2

sequence more likely. This is the simplest instance of learning an HMM. The3

prototypical problem to imagine that our original HMM λ comes from our4

knowledge of the original problem (say a physics model of the dynamics of a5

robot and its sensors). Given more data, namely the observations, we want to6

update this model. The most natural way to update the model is to maximize7

the likelihood of observations given our model, i.e.,8

λ∗ = argmax
λ

P(Y1, . . . , Yt; λ).

This is known as maximum-likelihood estimation (MLE). In this section9

we will look at the Baum-Welch algorithm which solves the MLE problem10

iteratively. Given λ, it finds a new HMM λ′ = (π′, T ′,M ′) (the ′ denotes a11

new matrix, not the transpose here) such that12

P(Y1, . . . , Yt; λ
′) > P(Y1, . . . , Yt; λ).

Let us consider a simple problem. We are going to imagine that the FBI13

is trying to catch the dangerous criminal Keyser Soze who is known to travel14

between two cities Los Angeles (LA) which will be state x1 and New York15

City (NY) which will be state x2. The FBI initially have no clue about his16

whereabouts, so their initial belief on his location is uniform π = [0.5, 0.5].17

His movements are modeled using a Markov chain18

T =

[
0.5 0.5

0.5 0.5

]
,

e.g., if Soze is in LA, he is likely to stay in LA or go to NY with equal19

probability. The FBI can make observations about him, they either observe20

him to be in LA (y1), NY (y2) or do not observe anything at all (null, y3).21

M =

[
0.4 0.1 0.5

0.1 0.5 0.4

]
.

Say that they received an observation sequence of 20 periods22

(null, LA, LA, null, NY, null, NY, NY, NY, null, NY, NY, NY, NY, NY, null, null, LA, LA, NY).

Can we say something about the probability of Soze’s movements? At each23

time k we can compute24

γk(x) := P(Xk = x | Y1, . . . , Yt)

the smoothing probability. We can also compute the most likely state trajectory25

he could have take given our observations using decoding. Let us focus on the26

smoothing probabilities γk(x) as shown below.27

26

1

The point-wise most likely sequence of states after doing so turns out to be2

(LA, LA, LA, LA, NY, LA, NY, NY, NY, LA, NY, NY, NY, NY, NY, LA, LA, LA, LA, NY).

Notice how smoothing fills in the missing observations above.3

Expected state visitation counts The next question we should ask is how4

should we update the model λ given this data. We are going to learn the entries5

of the state-transition using6

T ′
x,x′ =

E[number of transitions from x to x′]

E[number of times the Markov chain was in state x]
.

What is the denominator, it is simply the sum of the probabilities that the7

Markov chain was at state x at time 1, 2, . . . , t− 1 given our observations, i.e.,8

E[number of times the Markov chain was in state x] =

t−1∑
k=1

γk(x).

The numerator is given in a similar fashion. We will define a quantity9

ξk(x, x
′) := P(Xk = x,Xk+1 = x′ | Y1, . . . , Yt)

= η αk(x)Tx,x′Mx′,yk+1
βk+1(x

′);
(2.15)

where η is a normalizing constant such that
∑

x,x′ ξk(x, x
′) = 1.

? Derive the expression for
ξk(x, x

′) for yourself.

Observe that10

ξk is the joint probability of Xk and Xk+111

ξk(x, x
′) = P(Xk+1 = x′ | Xk = x, Y1, . . . , Yt) γk(x)

̸= Tx,x′ γk(x)

= P(Xk+1 = x′ | Xk = x) P(Xk = x | Y1, . . . , Yt).

The expected value of transitioning between states x and x′ is12

E[number of transitions from x to x′] =

t−1∑
k=1

ξk(x, x
′).

27

This gives us our new state transition matrix, you will see in the homework1

that it comes to be2

T ′ =

[
0.47023 0.52976

0.35260 0.64739

]
.

This is a much better informed FBI than the other we had before beginning3

the problem where the transition matrix was all 0.5s.4

The new initial distribution What is the new initial distribution for the5

HMM? Recall that we are trying to compute the best HMM given the observa-6

tions, so if the initial distribution was7

π = P(X1)

before receiving any observations from the HMM, it is now8

π′ = P(X1 | Y1, . . . , Yt) = γ1(x);

the smoothing estimate at the first time-step.9

Updating the observation matrix We can use a similar logic at the expected10

state visitation counts to write11

M ′
x,y =

E[number of times in state x, when observation was y]
E[number of times the Markov chain was in state x]

=

∑t
k=1 γk(x)1{yk=y}∑t

k=1 γk(x)
.

You will see in your homework problem that this matrix comes up to be12

M ′ =

[
0.39024 0.20325 0.40650

0.06779 0.706214 0.2259

]
.

Notice how the observation probabilities for the unknown state y3 have gone13

down because the Markov chain does not have those states.14

The ability to start with a rudimentary model of the HMM and update it15

using observations is quite revolutionary. Baum et al. proved in the paper16

Baum, Leonard E., et al. "A maximization technique occurring in the sta-17

tistical analysis of probabilistic functions of Markov chains." The annals of18

mathematical statistics 41.1 (1970): 164-171. Discuss the following questions:19

• When do we stop in our iterated application of the Baum-Welch algo-20

rithm?21

• Are we always guaranteed to find the same HMM irrespective of our22

initial HMM?23

• If our initial HMM λ is the same, are guaranteed to find the same HMM24

λ′ across two different iterations of the Baum-Welch algorithm?25

• How many observations should we use to update the HMM?26

	Introduction to State Estimation
	A review of probability
	Random variables

	Using Bayes rule for combining evidence
	Coherence of Bayes rule

	Markov Chains
	Hidden Markov Models (HMMs)
	The forward algorithm
	The backward algorithm
	Bayes filter
	Smoothing
	Prediction
	Decoding: Viterbi's Algorithm
	Shortest path on a Trellis graph

	Learning an HMM from observations

